Predictive Accuracy of Digital Biomarker Technologies for Detection of Mild Cognitive Impairment and Pre-Frailty Amongst Older Adults: A Systematic Review and Meta-Analysis. Teh S, et al, IEEE J Biomed Health Inform 2022.

  • Proposé le : 28/12/2023 04:07:09
  • Par : Bot
  • Avec la version du site : v2021_01_12
  • Revu par :
    • Mettre votre nom d'utilisateur
    • Mettre votre nom d'utilisateur
Notes sur les tags :
  • Adopter cette revue :
    Si vous souhaitez prendre en charge cette revue d'article, merci de remplacer le tag Non_attribué par Attribué et ajoutez aussi votre nom d'utilisateur à l'emplacement prévu.
  • Réaliser des modifications :
    Pour modifier ce document, il est nécessaire d'être connecté au site. Pour cela, assurez-vous d'avoir des identifiants valides. Si vous n'en avez pas, contactez-nous. Pour vous connecter, cliquez sur l'icône dans la barre de navigation.
  • Demander la finalisation de la revue de l'article :
    Une fois revue et complétée, merci de remplacer l'étiquette Non_finalisé par A_finaliser. Un administrateur se chargera de valider la revue et de la publier avec le tag Finalisé.

Résumé et points clés

Digital biomarker technologies coupled with predictive models are increasingly applied for early detection of age-related potentially reversible conditions including mild cognitive impairment (MCI) and pre-frailty (PF). We aimed to determine the predictive accuracy of digital biomarker technologies to detect MCI and PF with systematic review and meta-analysis. A computer-assisted search on major academic research databases including IEEE-Xplore was conducted. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines were adopted for reporting in this study. Summary receiver operating characteristic curve based on random-effect bivariate model was used to evaluate overall sensitivity and specificity for detection of the respective age-related conditions. A total of 43 studies were selected for final systematic review and meta-analysis. 26 studies reported on detection of MCI with sensitivity and specificity of 0.48-1.00 and 0.55-1.00, respectively. On the other hand, there were 17 studies that reported on the detection of PF with reported sensitivity of 0.53-1.00 and specificity of 0.61-1.00. Meta-analysis further revealed pooled sensitivities of 0.84 (95% CI: 0.79-0.88) and 0.82 (95% CI: 0.74-0.88) for in-home detection of MCI and PF, respectively, while pooled specificities were 0.85 (95% CI: 0.80-0.89) and 0.82 (95% CI: 0.75-0.88), respectively. Besides MCI, and PF, in this work during systematic review, we also found one study which reported a sensitivity of 0.93 and a specificity of 0.57 for detection of cognitive frailty (CF). The meta-analytic result, for the first time, quantifies the predictive efficacy of digital biomarker technologies for detection of MCI and PF. Additionally, we found the number of studies for detection of CF to be notably lower, indicating possible research gaps to explore predictive models on digital biomarker technology for detection of CF.

Références de l'article


Discussion

  • Cette section peut être éditée par les relecteurs, les rédacteurs, les modérateurs et les administrateurs. Elle regroupe l'ensemble des échanges autours de la référence ci-dessus présentée.
  • Référez-vous à cette page pour connaître le rôle des utilisateurs et pour participer à la discussion.
  • Il n'y a, pour l'instant, aucune discussion en cours.

Éditer la discussion


Références


Gardez le contact

Suivez notre utilisateur Twitter : @AgingPapers
Nos rencontres visio