Application of machine learning in measurement of ageing and geriatric diseases: a systematic review. Das A, et al, BMC Geriatr 2023.

  • Proposé le : 01/02/2026 03:07:22
  • Par : Bot
  • Avec la version du site : v2021_01_12
  • Revu par :
    • Mettre votre nom d'utilisateur
    • Mettre votre nom d'utilisateur
Notes sur les tags :
  • Adopter cette revue :
    Si vous souhaitez prendre en charge cette revue d'article, merci de remplacer le tag Non_attribué par Attribué et ajoutez aussi votre nom d'utilisateur à l'emplacement prévu.
  • Réaliser des modifications :
    Pour modifier ce document, il est nécessaire d'être connecté au site. Pour cela, assurez-vous d'avoir des identifiants valides. Si vous n'en avez pas, contactez-nous. Pour vous connecter, cliquez sur l'icône dans la barre de navigation.
  • Demander la finalisation de la revue de l'article :
    Une fois revue et complétée, merci de remplacer l'étiquette Non_finalisé par A_finaliser. Un administrateur se chargera de valider la revue et de la publier avec le tag Finalisé.

Résumé et points clés

Background: As the ageing population continues to grow in many countries, the prevalence of geriatric diseases is on the rise. In response, healthcare providers are exploring novel methods to enhance the quality of life for the elderly. Over the last decade, there has been a remarkable surge in the use of machine learning in geriatric diseases and care. Machine learning has emerged as a promising tool for the diagnosis, treatment, and management of these conditions. Hence, our study aims to find out the present state of research in geriatrics and the application of machine learning methods in this area.

Methods: This systematic review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and focused on healthy ageing in individuals aged 45 and above, with a specific emphasis on the diseases that commonly occur during this process. The study mainly focused on three areas, that are machine learning, the geriatric population, and diseases. Peer-reviewed articles were searched in the PubMed and Scopus databases with inclusion criteria of population above 45 years, must have used machine learning methods, and availability of full text. To assess the quality of the studies, Joanna Briggs Institute's (JBI) critical appraisal tool was used.

Results: A total of 70 papers were selected from the 120 identified papers after going through title screening, abstract screening, and reference search. Limited research is available on predicting biological or brain age using deep learning and different supervised machine learning methods. Neurodegenerative disorders were found to be the most researched disease, in which Alzheimer's disease was focused the most. Among non-communicable diseases, diabetes mellitus, hypertension, cancer, kidney diseases, and cardiovascular diseases were included, and other rare diseases like oral health-related diseases and bone diseases were also explored in some papers. In terms of the application of machine learning, risk prediction was the most common approach. Half of the studies have used supervised machine learning algorithms, among which logistic regression, random forest, XG Boost were frequently used methods. These machine learning methods were applied to a variety of datasets including population-based surveys, hospital records, and digitally traced data.

Conclusion: The review identified a wide range of studies that employed machine learning algorithms to analyse various diseases and datasets. While the application of machine learning in geriatrics and care has been well-explored, there is still room for future development, particularly in validating models across diverse populations and utilizing personalized digital datasets for customized patient-centric care in older populations. Further, we suggest a scope of Machine Learning in generating comparable ageing indices such as successful ageing index.

Références de l'article


Discussion

  • Cette section peut être éditée par les relecteurs, les rédacteurs, les modérateurs et les administrateurs. Elle regroupe l'ensemble des échanges autours de la référence ci-dessus présentée.
  • Référez-vous à cette page pour connaître le rôle des utilisateurs et pour participer à la discussion.
  • Il n'y a, pour l'instant, aucune discussion en cours.

Éditer la discussion


Références


Gardez le contact

Suivez notre utilisateur Twitter : @AgingPapers
Nos rencontres visio