Risk prediction models of mortality after hip fracture surgery in older individuals: a systematic review. Sun Y, et al, Curr Med Res Opin 2024.

  • Proposé le : 05/07/2024 04:07:10
  • Par : Bot
  • Avec la version du site : v2021_01_12
  • Revu par :
    • Mettre votre nom d'utilisateur
    • Mettre votre nom d'utilisateur
Notes sur les tags :
  • Adopter cette revue :
    Si vous souhaitez prendre en charge cette revue d'article, merci de remplacer le tag Non_attribué par Attribué et ajoutez aussi votre nom d'utilisateur à l'emplacement prévu.
  • Réaliser des modifications :
    Pour modifier ce document, il est nécessaire d'être connecté au site. Pour cela, assurez-vous d'avoir des identifiants valides. Si vous n'en avez pas, contactez-nous. Pour vous connecter, cliquez sur l'icône dans la barre de navigation.
  • Demander la finalisation de la revue de l'article :
    Une fois revue et complétée, merci de remplacer l'étiquette Non_finalisé par A_finaliser. Un administrateur se chargera de valider la revue et de la publier avec le tag Finalisé.

Objective: This study aimed to critically assess existing risk prediction models for postoperative mortality in older individuals with hip fractures, with the objective of offering substantive insights for their clinical application.

Design: A comprehensive search was conducted across prominent databases, including PubMed, Embase, Cochrane Library, SinoMed, CNKI, VIP, and Wanfang, spanning original articles in both Chinese and English up until 1 December 2023. Two researchers independently extracted pertinent research characteristics, such as predictors, model performance metrics, and modeling methodologies. Additionally, the bias risk and applicability of the incorporated risk prediction models were systematically evaluated using the Prediction Model Risk of Bias Assessment Tool (PROBAST).

Results: Within the purview of this investigation, a total of 21 studies were identified, constituting 21 original risk prediction models. The discriminatory capacity of the included risk prediction models, as denoted by the minimum and maximum areas under the subject operating characteristic curve, ranged from 0.710 to 0.964. Noteworthy predictors, recurrent across various models, included age, sex, comorbidities, and nutritional status. However, among the models assessed through the PROBAST framework, only one was deemed to exhibit a low risk of bias. Beyond this assessment, the principal limitations observed in risk prediction models pertain to deficiencies in data analysis, encompassing insufficient sample size and suboptimal handling of missing data.

Conclusion: Subsequent research endeavors should adopt more stringent experimental designs and employ advanced statistical methodologies in the construction of risk prediction models. Moreover, large-scale external validation studies are warranted to rigorously assess the generalizability and clinical utility of existing models, thereby enhancing their relevance as valuable clinical references.

Références de l'article


Discussion

  • Cette section peut être éditée par les relecteurs, les rédacteurs, les modérateurs et les administrateurs. Elle regroupe l'ensemble des échanges autours de la référence ci-dessus présentée.
  • Référez-vous à cette page pour connaître le rôle des utilisateurs et pour participer à la discussion.
  • Il n'y a, pour l'instant, aucune discussion en cours.

Éditer la discussion



Gardez le contact

Suivez notre utilisateur Twitter : @AgingPapers
Nos rencontres visio