Interventions for preventing delirium in older people in institutional long-term care. Woodhouse R, et al, Cochrane Database Syst Rev 2019.
- Proposé le : 20/01/2022 11:07:04
- Par : Bot Twitter
- Avec la version du site : v2021_01_12
- Revu par :
- Mettre votre nom d'utilisateur
- Mettre votre nom d'utilisateur
Résumé et points clés
Objectives: To assess the effectiveness of interventions for preventing delirium in older people in institutional long-term care settings.
Search methods: We searched ALOIS (www.medicine.ox.ac.uk/alois), the Cochrane Dementia and Cognitive Improvement Group (CDCIG) 's Specialised Register of dementia trials (dementia.cochrane.org/our-trials-register), to 27 February 2019. The search was sufficiently sensitive to identify all studies relating to delirium. We ran additional separate searches in the Cochrane Central Register of Controlled Trials (CENTRAL), major healthcare databases, trial registers and grey literature sources to ensure that the search was comprehensive.
Selection criteria: We included randomised controlled trials (RCTs) and cluster-randomised controlled trials (cluster-RCTs) of single and multicomponent, non-pharmacological and pharmacological interventions for preventing delirium in older people (aged 65 years and over) in permanent LTC residence.
Data collection and analysis: We used standard methodological procedures expected by Cochrane. Primary outcomes were prevalence, incidence and severity of delirium; and mortality. Secondary outcomes included falls, hospital admissions and other adverse events; cognitive function; new diagnoses of dementia; activities of daily living; quality of life; and cost-related outcomes. We used risk ratios (RRs) as measures of treatment effect for dichotomous outcomes, hazard ratios (HR) for time-to-event outcomes and mean difference (MD) for continuous outcomes. For each outcome, we assessed the overall certainty of the evidence using GRADE methods.
Main results: We included three trials with 3851 participants. All three were cluster-RCTs. Two of the trials were of complex, single-component, non-pharmacological interventions and one trial was a feasibility trial of a complex, multicomponent, non-pharmacological intervention. Risk of bias ratings were mixed across the three trials. Due to the heterogeneous nature of the interventions, we did not combine the results statistically, but produced a narrative summary.It was not possible to determine the effect of a hydration-based intervention on delirium incidence (RR 0.85, 95% confidence interval (CI) 0.18 to 4.00; 1 study, 98 participants; very low-certainty evidence downgraded for risk of bias and very serious imprecision). This study did not assess delirium prevalence, severity or mortality.The introduction of a computerised system to identify medications that may contribute to delirium risk and trigger a medication review was probably associated with a reduction in delirium incidence (12-month HR 0.42, CI 0.34 to 0.51; 1 study, 7311 participant-months; moderate-certainty evidence downgraded for risk of bias) but probably had little or no effect on mortality (HR 0.88, CI 0.66 to 1.17; 1 study, 9412 participant-months; moderate-certainty evidence downgraded for imprecision), hospital admissions (HR 0.89, CI 0.72 to 1.10; 1 study, 7599 participant-months; moderate-certainty evidence downgraded for imprecision) or falls (HR 1.03, CI 0.92 to 1.15; 1 study, 2275 participant-months; low-certainty evidence downgraded for imprecision and risk of bias). Delirium prevalence and severity were not assessed.In the enhanced educational intervention study, aimed at changing practice to address key delirium risk factors, it was not possible to determine the effect of the intervention on delirium incidence (RR 0.62, 95% CI 0.16 to 2.39; 1 study, 137 resident months; very low-certainty evidence downgraded for risk of bias and serious imprecision) or delirium prevalence (RR 0.57, 95% CI 0.15 to 2.19; 1 study, 160 participants; very low-certainty evidence downgraded for risk of bias and serious imprecision). There was probably little or no effect on mortality (RR 0.82, CI 0.50 to 1.34; 1 study, 215 participants; moderate-certainty evidence downgraded for imprecision). The intervention was probably associated with a reduction in hospital admissions (RR 0.67, CI 0.57 to 0.79; 1 study, 494 participants; moderate-certainty evidence downgraded due to indirectness).
Authors' conclusions: Our review identified limited evidence on interventions for preventing delirium in older people in LTC. A software-based intervention to identify medications that could contribute to delirium risk and trigger a pharmacist-led medication review, probably reduces incidence of delirium in older people in institutional LTC. This is based on one large RCT in the US and may not be practical in other countries or settings which do not have comparable information technology services available in care homes. In the educational intervention aimed at identifying risk factors for delirium and developing bespoke solutions within care homes, it was not possible to determine the effect of the intervention on delirium incidence, prevalence or mortality. This evidence is based on a small feasibility trial. Our review identified three ongoing trials of multicomponent delirium prevention interventions. We identified no trials of pharmacological agents. Future trials of multicomponent non-pharmacological delirium prevention interventions for older people in LTC are needed to help inform the provision of evidence-based care for this vulnerable group.
Références de l'article
Discussion
- Cette section peut être éditée par les relecteurs, les rédacteurs, les modérateurs et les administrateurs. Elle regroupe l'ensemble des échanges autours de la référence ci-dessus présentée.
- Référez-vous à cette page pour connaître le rôle des utilisateurs et pour participer à la discussion.
- Il n'y a, pour l'instant, aucune discussion en cours.